УДК 621.315(575.2)

DOI: 10.36979/1694-500X-2022-22-8-42-48

СТАТИСТИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПОТЕРЬ ЭЛЕКТРОЭНЕРГИИ В ЭЛЕКТРИЧЕСКИХ СЕТЯХ 110-500 КВ ЭНЕРГОСИСТЕМЫ КЫРГЫЗСТАНА

Ю.П. Симаков, Ш.Б. Дикамбаев

Аннотация. Приведены результаты анализа отчетных данных по техническим потерям электроэнергии в электрических сетях ОАО «НЭС Кыргызстана» и ПВЭС за 2018–2020 годы. В результате обработки отчетных данных методами математической статистики получены характеристики потерь в виде уравнений регрессии, отражающие зависимость технических потерь от поступления электроэнергии в сеть. Показана необходимость разработки новой редакции «Инструкции по расчёту и обоснованию нормативов технологических потерь электроэнергии при её передаче по электрическим сетям 110–500 кВ ОАО «Национальная электрическая сеть Кыргызстана».

Ключевые слова: электрические сети; фактические потери электроэнергии; нормативные характеристики потерь электроэнергии; предприятия высоковольтных электрических сетей.

КЫРГЫЗСТАНДЫН ЭНЕРГЕТИКА СИСТЕМАСЫНЫН 110-500 КВ ЭЛЕКТР ТАРМАГЫНДА ЭЛЕКТР ЭНЕРГИЯСЫН ЖОГОТУУНУН СТАТИСТИКАЛЫК МҮНӨЗДӨМӨЛӨРҮ

Ю.П. Симаков, Ш.Б. Дикамбаев

Аннотация. Макалада 2018-2020-жылдарга карата «Кыргызстандын улуттук электр тармагы» ачык акционердик коомунун жана Жогорку чыңалуудагы электр тармактарынын ишканаларынын электр тармактарындагы электр энергиясын техникалык жоготуулары боюнча отчеттук маалыматтарга талдоо жүргүзүүнүн жыйынтыктары келтирилген. Отчеттук маалыматтарды математикалык статистика ыкмалары менен иштеп чыгуунун натыйжасында техникалык жоготуулардын электр энергиясынын тармакка келип түшүүсүнө көз карандылыгын чагылдырган регрессия тендемелери түрүндө жоготуулардын мүнөздөмөлөрү алынган. «Кыргызстандын улуттук электр тармагы» ачык акционердик коомунун 110-500 кВ электр тармактары боюнча электр энергиясын берүүдө технологиялык жоготууларынын ченемдерин эсептөө жана негиздөө боюнча нускаманын» жаңы редакциясын иштеп чыгуу зарылдыгы көрсөтүлдү.

Түйүндүү сөздөр: электр тармактары; электр энергиясынын чыныгы жоготуулары; электр энергиясынын жоготууларынын ченемдик мүнөздөмөлөрү; жогорку чыңалуудагы электр тармактарынын ишканалары.

STATISTICAL CHARACTERISTICS OF ELECTRICITY LOSSES IN 110-500 KV ELECTRIC NETWORKS OF THE KYRGYZ POWER SYSTEM

Yu.P. Simakov, Sh.B. Dikambaev

Abstract. The results of the analysis of the reporting data on technical losses of electricity in the electric networks of JSC "NES of Kyrgyzstan" and PVES for 2018-2020 are presented. As a result of processing the reporting data by methods of mathematical statistics, loss characteristics in the form of regression equations were obtained, reflecting the dependence of technical losses on the supply of electricity to the grid. The necessity of developing a new edition of the "Instructions for calculating and justifying the standards of technological losses of electricity during its transmission over 110-500 kV electric networks of JSC "National Electric Grid of Kyrgyzstan" is shown.

Keywords: electric networks; actual electricity losses; regulatory characteristics of electricity losses; enterprises of high-voltage electric networks.

Нормирование потерь электроэнергии является организационным инструментом стимулирования для проведения экономически обоснованных мероприятий по снижению потерь в энергоснабжающих организациях.

При передаче электрической энергии в каждом элементе электрической сети возникают потери. На рисунке 1 приведена общепринятая в настоящее время структура потерь электроэнергии в электрических сетях.



Рисунок 1 - Структура фактических (отчетных) потерь электроэнергии в электрических сетях

Обоснование норматива технологических потерь электроэнергии в электрических сетях 110–500 кВ Кыргызской энергосистемы с 2011 г. производится по «Инструкции по расчёту и обоснованию нормативов технологических потерь электроэнергии при её передаче по электрическим сетям 110–500 кВ ОАО «Национальная электрическая сеть Кыргызстана» (далее — Инструкция), которая была рекомендована к практическому применению решением Научно-технического совета Минэнерго КР от 29 июня 2011 г. № 1. Основные положения Инструкции опубликованы в [1].

Ввод в эксплуатацию ЛЭП 500 кВ «Датка-Кемин» и подстанции «Кемин» привели, в основном, к изменению режимов работы в электрических сетях предприятий высоковольтных электрических сетей [2, 3], в связи с чем, в 2017 г. была проведена корректировка характеристик потерь электроэнергии с учетом данных по отчетным потерям электроэнергии за 2016 г. и 9 мес. 2017 г. Для нормальной схемы сети этого периода ЛЭП 500 кВ «Датка-Кемин» включала межсистемные линии электропередачи, связывающие энергосистемы Кыргызстана и Казахстана.

Решением Научно-технического совета по вопросам промышленности и топливно-энергетического комплекса бывшего Государственного комитета промышленности, энергетики и недропользования КР (протокол от 05 января 2018 г.) была рекомендована Инструкция, в которой предусматривалось, что «Методика расчета норматива потерь электроэнергии в электрических сетях 110–500 кВ ОАО «Национальная электрическая сеть Кыргызстана» подлежит корректировке через каждые три года или в случае появления объективных, существенно влияющих на потери, факторов. Три года с момента принятия Инструкции истекли в 2020 г., поэтому возникла необходимость корректировки нормативных характеристик потерь электрической энергии в электрических сетях 110–500 кВ. Для решения

этой задачи в 2021 г. была выполнена обработка отчетных данных по потерям электроэнергии в электрических сетях ОАО «НЭСК» за период 2018–2020 гг., и с использованием методов математической статистики и регрессионного анализа получены характеристик потерь электроэнергии [4].

При существующей схеме электрических сетей ОАО «НЭС Кыргызстана» потери электроэнергии в 2018–2020 гг. находились в пределах 794–831 млн кВт·ч (или 5.3–5,7 % к поступлению электроэнергии в сеть), при этом более 70 % потерь приходится на электрические сети Чуйского и Жалалабадского предприятий высоковольтных электрических сетей (таблица 1, рисунок 2).

В таблице и далее приняты следующие сокращения:

ЧуПВЭС – Чуйское предприятие высоковольтных электрических сетей;

ТПВЭС – Таласское предприятие высоковольтных электрических сетей;

ИПВЭС – Иссыккульское предприятие высоковольтных электрических сетей;

НПВЭС – Нарынское предприятие высоковольтных электрических сетей;

ОПВЭС – Ошское предприятие высоковольтных электрических сетей;

ЖПВЭС – Жалалабадское предприятие высоковольтных электрических сетей.

В таблица 2 приведены отчетные данные по поступлению и потерям электроэнергии в электрические сети ОАО «НЭС Кыргызстана» на месячных интервалах в 2018–2020 гг.

Обработка отчётных данных (таблица 2) методами математической статистики позволяет получить, во-первых, уравнение регрессии, отражающее зависимость технических потерь (ΔW) от поступления электроэнергии в сеть (W), во-вторых, в первом приближении оценить достоверность отчётных данных по техническим потерям электроэнергии. Аппроксимации месячных значений отчётных потерь электроэнергии в зависимости от поступления электроэнергии в сеть, учитывая квадратичную зависимость нагрузочных потерь электроэнергии от поступления электроэнергии в сеть, следует производить полиномиальной функцией вида:

$$y = ax^2 + bx + c,$$

где y — потери электроэнергии (ΔW); x — поступление электроэнергии в сеть (W); a, в, с — коэффициенты, полученные в результате аппроксимации.

С учётом принятых обозначений уравнение регрессии будет иметь вид:

$$\Lambda W = aW^2 + bW + c.$$

Для получения более высокой степени достоверности аппроксимации (R²>0,95), «выбросы» (отчётные данные, значения которых лежат за пределами 5 %-ного интервала от аппроксимирующей кривой) при построении характеристик потерь не учитывались. Объективными причинами «выбросов» могут быть влияющие факторы: аварийное или плановое отключение элементов сети, изменение погодных условий, неполадки в системах учёта и т. д. Они подлежат дополнительной проверке для выяснения причин их возникновения.

В таблице 3 приведены нормативные характеристики Инструкции по расчёту и обоснованию нормативов технологических потерь электроэнергии при её передаче по электрическим сетям 110–500 кВ ОАО «НЭС Кыргызстана» 2018 г. и характеристики, полученные в данной работе.

На рисунке 3 показан результат аппроксимации отчетных данных потерь и полученная с высокой достоверностью (0,98) характеристика потерь.

В таблице 4 приведены результаты расчета потерь электроэнергии по нормативным характеристикам Инструкции и по полученным характеристикам потерь. Показана точечная диаграмма, построенная по данным таблицы 4, на которой даны и отчетные значения потерь. Сравнение результатов по суммарным значениям потерь за три года показывает, что полученная характеристика потерь для ОАО НЭСК дает более приемлемые значения, отклонение от суммарных отчетных потерь не превышает 1 %. В то время как расчет по характеристикам Инструкции дает отклонение от отчетных потерь более 7 %, что наглядно видно и на диаграмме (рисунок 4).

Таблица 1 –Технические потери э/э в электрических сетях НЭСК (ПВЭС) в 2018–2020 гг., млн кВт-ч

Год	ЖПВЭС	ОПВЭС	НПВЭС	ИПВЭС	ТПВЭС	ЧуПВЭС	НЭСК	
2018	273,677	85,6008	17,069	90,4835	14,916	312,376	794,122	5,32 %
2019	280,132	88,6424	17,065	90,0978	15,488	345,852	800,257	5,48 %
2020	310,259	98,9378	16,728	98,8139	17,379	293,247	831,56	5,68 %

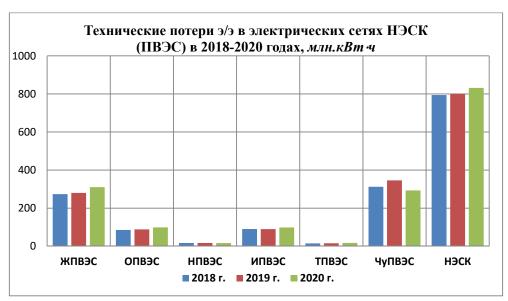


Рисунок 2 — Технические потери э/э в электрических сетях НЭСК (ПВЭС) за рассматриваемый период

Таблица 2 – Поступление и потери электроэнергии в электрических сетях ОАО «НЭС Кыргызстана» на месячных интервалах в 2018–2020 гг.

		2018	2019			2020			
Ме-	Поступление, млн кВт·ч	Потери, млн кВт·ч	%	Поступление, млн кВт·ч	Потери, млн кВт·ч	%	Поступление, млн кВт·ч	Потери, млн.кВт·ч	%
1	1926,483	104,9498	5,44	1731,889	97,90959	5,65	1840,926	108,4755	5,89
2	1686,725	87,13183	5,16	1570,527	88,40154	5,62	1585,149	92,3384	5,82
3	1363,965	69,84311	5,12	1349,727	70,71733	5,23	1351,023	73,68928	5,45
4	970,6977	54,11565	5,57	1021,1	57,69027	5,64	956,0579	53,60042	5,60
5	842,0956	46,73822	5,55	934,8865	51,86449	5,54	822,9143	45,64003	5,54
6	869,0429	43,82061	5,04	837,8748	46,11946	5,50	850,692	47,2495	5,55
7	1057,374	52,25426	4,94	1039,87	55,98482	5,38	993,5979	46,1104	4,64
8	961,1399	51,50198	5,35	963,8032	50,57794	5,24	923,567	46,9548	5,08
9	772,211	39,39942	5,10	788,6769	41,6142	5,27	817,1072	45,42253	5,55
10	1140,95	57,03955	4,99	1029,333	52,13987	5,06	1228,648	63,80461	5,19
11	1595,007	88,92363	5,57	1559,776	86,61716	5,55	1638,884	95,53259	5,82
12	1746,567	98,40389	5,63	1776,847	100,6204	5,66	1983,907	116,7826	5,88
Год	14932,26	794,122	5,29	14604,31	800,2571	5,45	14992,47	835,6007	5,50

Таблица 3 – Характеристики потерь электроэнергии по Инструкции и полученные в данной работе

Инструкция 2018	Характеристики 2021
$\Delta W_{OAO"H\ni CK"} = 0,00003 \cdot W^2 - 0,0098 \cdot W + 34,05$	$\Delta W = 1,24 \cdot 10^{-5} \cdot W^2 + 0,0263W + 13,93$
$\Delta W_{y_{JIB} \ni C} = 0,000026 \cdot W^2 - 0,0028 \cdot W + 15,85;$	$\Delta W = 1,21 \cdot 10^{-5} \cdot W^2 + 0,0118W + 9,197$
$\Delta W_{T\Pi B \ni C} = 0,00036W^2 + 0,00056W + 0,862$	$\Delta W = 2,93 \cdot 10^{-4} \cdot W^2 + 0,00418W + 0,5983$
$\Delta W_{M\Pi B \ni C} = 0,00044W^2 - 0,021W + 1,99$	$\Delta W = 1,98 \cdot 10^{-4} \cdot W^2 + 0,03587W - 1,1$
$\Delta W_{H\Pi B \ni C} = 0,00024 \cdot W^2 + 0,0187 \cdot W + 0,089$	$\Delta W = 5,27 \cdot 10^{-4} \cdot W^2 - 0,02424W + 1,016$
$\Delta W_{Out\Pi B \ni C} = 0,0001208 \cdot W^2 - 0,0193 \cdot W + 4,1$	$\Delta W = 1,07 \cdot 10^{-4} \cdot W^2 - 0,0229W + 5,3388$
$\Delta W_{\mathcal{K}\Pi B \ni C} = 0,000023 \cdot W^2 - 0,0144 \cdot W + 12,8 \dots$	$\Delta W = 2, 2 \cdot 10^{-5} \cdot W^2 - 0,0187W + 18,693$

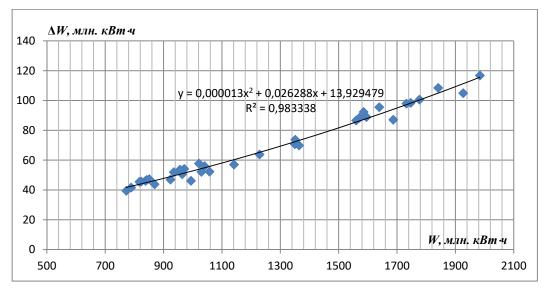


Рисунок 3 — Результат аппроксимации отчетных данных потерь электроэнергии в электрических сетях $110-500~\mathrm{kB}$ ОАО НЭСК в зависимости от поступления электроэнергии в сеть

Таблица 4 — Результаты расчета потерь электроэнергии в электрических сетях ОАО «НЭС Кыргызстана» по отчетным данным за период 2018-2020 гг.

	ОАО «НЭС Кыргызстан	a»		
Поступление электроэнергии, месячные значения в 2018—	Отчетные месячные значения	Расчетные значения потерь, ΔW , млн к $B \mathbf{r} \cdot \mathbf{v}$		
2020 гг., W, млн кВт·ч	потерь электроэнергии, ΔW , млн к B т \cdot ч	по полученной характеристике	по Инструкции 2018 г.	
1926,483	104,9498	110,0391	126,9606	
1686,725	87,13183	93,06336	103,3213	
1363,965	69,84311	72,46206	76,94516	
970,6977	54,11565	50,85209	53,25478	
842,0956	46,73822	44,61764	47,52121	
869,0429	43,82061	45,89004	48,64045	
1057,374	52,25426	55,28542	57,67893	
961,1399	51,50198	50,37463	52,79453	
772,211	39,39942	41,40173	44,82163	
1140,95	57,03955	59,73661	62,3717	
1595,007	88,92363	86,94637	95,19035	
1746,567	98,40389	97,1669	108,8985	
1731,889	97,90959	96,15216	107,5107	
1570,527	88,40154	85,34898	93,10549	
1349,727	70,71733	71,61276	75,92556	
1021,1	57,69027	53,4074	55,77258	
934,8865	51,86449	49,07481	51,5585	
837,8748	46,11946	44,41997	47,34985	
1039,87	55,98482	54,37511	56,74916	
963,8032	50,57794	50,50745	52,92223	
788,6769	41,6142	42,14854	45,4313	
1029,333	52,13987	53,83079	56,19833	
1559,776	86,61716	84,65215	92,20123	
1776,847	100,6204	99,27712	111,8025	
1840,926	108,4755	103,8178	118,1292	
1585,149	92,3384	86,30132	94,34646	
1351,023	73,68928	71,68986	76,01787	
Сумма за 3 года	2429,98	2406,054	2612,435	
Отклонение расчетных значений от отчетных потерь в %	0	0,94	7,7	

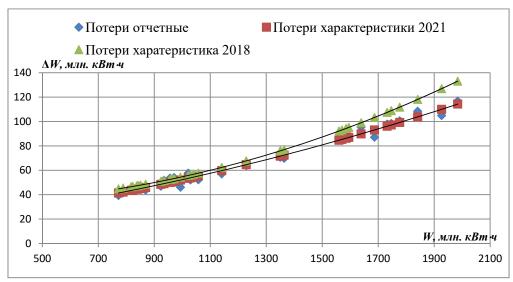


Рисунок 4 — Точечная диаграмма, построенная по результатам расчета потерь по нормативным характеристикам Инструкции, и по полученным характеристикам потерь в электрических сетях ОАО «НЭС Кыргызстана»

Аналогичные результаты были получены для электрических сетей всех ПВЭС, характеристики потерь приведены, как уже отмечалось, в таблице 3.

Таким образом, полученные на основании анализа отчётных данных по техническим потерям электроэнергии в электрических сетях ОАО «НЭС Кыргызстана» и ПВЭС за 2018—2020 гг. характеристики потерь электроэнергии с более высокой достоверностью отражают зависимость потерь от поступления электроэнергии в сеть по сравнению с нормативными характеристиками Инструкции. Необходима разработка новой редакции «Инструкции по расчёту и обоснованию нормативов технологических потерь электроэнергии при её передаче по электрическим сетям 110—500 кВ ОАО «НЭС Кыргызстана» с учетом полученных результатов.

Поступила: 06.06.22; рецензирована: 17.06.22; принята: 21.06.22.

Литература

- 1. *Симаков Ю.П.* Результаты исследований по расчёту и обоснованию нормативов технологических потерь электроэнергии в электрических сетях 110–500 кВ / Ю.П. Симаков, Н.Н. Чепелева // Труды межд. научн.-практич. конф. «Энергетика: состояние, проблемы, перспективы». Бишкек: Максат, 2014. С. 82–87.
- 2. *Симаков Ю.П.* Оценка влияния регулирования реактивной мощности на ПС "Кемин" на уровень напряжений узловых подстанций 220 кВ северной части энергосистемы Кыргызстана / Ю.П. Симаков, Э.Т. Куданалиев // Вестник КРСУ. 2016. Т. 16. № 1. С. 140–144.
- 3. Симаков Ю.П. Расчетная оценка режимов электрических сетей 110–500 кВ энергосистемы Кыргызстана в связи с вводом в эксплуатацию ЛЭП 500 кВ "Датка-Кемин" и подстанции "Кемин" / Ю.П. Симаков, Э.Т. Куданалиев // Методические вопросы исследования надежности больших систем энергетики. Вып. 68. Исследование и обеспечение надежности систем энергетики. Иркутск: ИСЭМ СО РАН, 2017. С. 30–35.
- 4. Проведение исследований потерь электроэнергии в сетях напряжением 110–500 кВ Кыргызской энергосистемы с целью корректировки нормативных характеристик и разработки соответствующих нормативных документов / Исполнители: к.т.н. Ш.Б. Дикамбаев, к.т.н. Ю.П. Симаков и др. // Отчёт по НИР. НИИЭЭ при МЭ КР. Бишкек, 2021. 140 с.